Перевод: со всех языков на английский

с английского на все языки

уровень отключения

  • 1 уровень отключения

    1. trip level

     

    уровень отключения
    (напр. турбины)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > уровень отключения

  • 2 уровень отключения

    Automation: cut-off

    Универсальный русско-английский словарь > уровень отключения

  • 3 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 4 сигнализатор


    warning device /unit/
    (аварийной сигнализации)
    - (визуальный, звуковой) — signalling device
    к данным сигнализаторам относятся лампы, звонки, зуммеры и т.п.). — signalling devices are lamps, bells, buzzers) etc.
    - (датчик) — detector, switch, sensor
    - (индикатор аварийной сигнализации)warning indicator
    - (неаварийной сигнализации)indicator
    - (панель световых табло)(light) annunciator panel
    - (световой, аварийный) — warning light
    - (световой, неаварийный) — indicator light
    - (световой, е цветным фильтром) — jeweled warning (or indicator) light
    - (световое табло)(light) annunciator
    - (шторный, закрывающий индикаwию) — shutter
    - бленкера, флажковый — warning flag
    -, бленкерный — warning flag
    - вводаenter indicator
    индицирует состояние системы (омега) в режиме ввода данных в свой вычислитель. — indicates that ons is in the data entry mode.
    - включения сигнальной лампы (низкого давления масла)(low oil pressure) warning light switch
    - воздушной скорости (реле давления)airspeed switch
    - возникновения пожара (датчик)fire detector
    - времени (реле)time switch
    - высокой температуры (выходящих) газов турбины (индикатор)overtemperature tgt indicator
    -, высотный — altitude switch
    -, высоты — altitude switch
    устройство, электрические контакты которого замыкаются или размыкаются при достижении заданной высоты. — the altitude switch is a device in which the electrical contacts are made or broken at the predetermined altitude.
    - выхода на критический угол при отрыве носового колеса (при взлете)overrotation warning unit
    -, гидравлический — hydraulically-operated pressure switch
    - готовности (системы к рабате), световой — arming light
    сигнализатор готовности системы автоматического флюгирования. — automatic feathering arming light.
    - давленияpressure switch
    реле, срабатывающее при изменении подводимого давления газа или жидкости (рис. 93). — а switch actuated by а change in the pressure of a gas or liquid.
    - давления, воздушный (пневматический) — air-operated pressure switch
    - давления в фильтреfilter pressure switch
    - давления в фильтре (световой)filter pressure light
    - давления, дифференциальный — differential pressure switch
    - давления, малогабаритный, теплостойкий, виброустойчивый (мств-) — small-size heat-resistant vibration proof pressure switch
    - давления топлива в гидроцилиндрах к.п.в. — compressor bleed valve control cylinder fuel pressure switch
    - достижения предельной скорости — maximum operating limit speed (warning) switch /relay/
    - дымаsmoke detector
    - дыма, фотоэлектрический — photoelectric smoke detector
    - загрязнения масла (двиг.) — chip detector, chips-in-oil detector
    - засорения фильтра (магнитный)filter clogging detector
    - избыточного давленияdifferential pressure switch
    - износа (тормозных дисков колеса)wear indicator
    штырь сигнализатора износа закреплен к нажимному диску и выступает из корпуса тормоза, — the wear indicator rod is secured to the pressure disc and projects through the torque plate.
    - контроля, световой убедиться в загорании светосигнализаторов контроля положения предкрылков. — monitor light
    - критического угла атаки (датчик)stall sensor
    -, механический — mechanically-operated switch
    - минимального давления топлива на входе в hp (насос регулятор) — fcu/ffr/ inlet minimum fuel pressure switch
    -, мнемонический, световой — mnemonic indicating (or warning) light
    -, напоминающий (о пределе к-л. параметра) — reminder. airport minimum safe altitude remindeг.
    - нарушения питания (снп)power fail relay (pfr)
    срабатывает при прекращении подачи и понижении напряжения питания. — operates when the power supply is lost or underrated.
    - нарушения (параметров) питания (реле) реле, срабатывающее при нарушении параметров питания. — power relay. relay which functions at a predetermined value of power. it may be an overpower or underpower relay.
    - недостаточного (малого) давления топлива (масла), включающий лампу (или табло) — fuel (oil) low pressure warning light switch
    - неопределенности положения самолета относительно наземных станций и ошибок контрольных сумм памяти вычислителя — амв annunciator indicates position ambiguity or memory checksum error.
    - обледененияice detector
    - обледенения (входной части двигателя)(engine inlet section) ice detector
    - обледенения, двухштырьевой — dual probe ice detector
    - обледенения, радиоизотопный — radio-isotope ice detector
    - обледенения, штырьевой — probe ice detector
    - обнаружения (появления) дымаsmoke detector
    - обнаружения стружки (в масле двиг.) магнитный — magnetic chip detector
    - оборотов — speed /rpm/ sensitive switch
    - ограничения температуры (cot)temperature limit switch
    - опасного приближения к режиму сваливания, вибрационный (автомат тряски штурвала) — stick shaker. with stall warning test switch depressed, both stick shakers should operate.
    - опасной вибрации (двиг. 1) (световой) — (engine 1) vibration caution light
    - опасной высоты (световой, табло) — altitude alert light
    - опасных температур (сот) осуществляет переключения во внешней цепи, когда входной сигнал превышает уровень настройки задатчика. — overtemperature switch
    - остатка топлива (в баке)fuel (tank) low level switch
    сигнализирует о минимальном количестве топлива в баке. — low level warning of the fuel contents in tank no... is given by the fuel low level switch.
    - остатка топлива, поплавковый — fuel low float switch
    - остаточного давления в сети основного (аварийного) торможенияnormal (standby) brake residual pressure switch
    - отказа крм (курсового маяка) — localizer shutter, vor-loc flag, loc flag

    the localizer shutter or vor-loc flag covers the localizer runway when the localizer signal is lost.
    - отказа курса (прибора кпп) — localizer shutter, vor-loc flag, loc flag
    - отказа питания (датчик) — power fail /-lost/ relay /switch/
    - отказа питания (индикатор) — power fail /-lost/ indicator
    - отказа (сигнала) ворvor fail flag
    - отказа счетчика зпу (рис. 73) — course (counter) readout fail flag /shutter/
    - отказа счетчика дальности (в км) (рис. 73) — dme readout fail flag, dme fail flag /shutter/
    - отказа, шторный — shutter
    - отключения стабилизации антенны (рлс)ant stab off indicating light (for radar antenna stabilization turn-off)
    - открытого положения замка реверса тягиthrust reverser lock open position warning switch
    - отрицательного крутящего моментаnegative torque switch
    - первой и второй очереди разряда огнетушителей — (fire extinguisher) main and alternate (main, altn disch) discharge indicator
    - перегреваoverheat detector
    - перегрузки — g-switch, g switch
    - перегрузки (напр., пятикратной) — 5g-switch, 5g switch
    - перепада давленияdifferential pressure switch
    для контроля работы топливной системы, включающий табло засор. фильтра. — the switch is used to monitor the fuel system condition to actuate the light placarded filter clog.
    - перепада давления на (топливном) фильтре(fuel) filter differential pressure switch
    - перепада давления топлива (спт) (на выходе подкачивающего насоса бака)fuel differential pressure switch
    -, пилотажно-посадочный (ппс) — landing gear (and flaps) position indicating panel
    - повышенного давления (в топливном баке)(fuel tank) overpressure switch (ovpr sw)
    - (наличия или отсутствия) подвескиstore station status indicator
    - пожара (датчик)fire detector
    - пожара (лампа, табло) — fire warning light
    - пожара, быстродействующий — quick acting fire detector
    - пожара, контурный — continuous type fire detector
    - положения (индикатор)position indicator
    - положения закрылковflap position indicator
    - положения замка реверсивного устройстваthrust reverser (door) lock position switch
    - положения лопаток вна квдhp igv position switch
    - положения "обратной тяги створок реверса" — thrust reverser door /bucket/ deployed /extended/ position warning switch
    - положения рудthrottle position switch
    - положения рычага крана управления реверсивным устройствомthrust reverser control valve lever position switch
    - положения створок реверсивного устройстваthrust reverser door position switch
    - положения (угла) лопаток bha с углом установки 0° (или -33°) — 0° (or -33°) igv position switch
    - положения шассиlanding gear position indicator
    - помпажа (двиг.) — surge warning switch
    - появления металлической (стружки (спмс))chip detector
    - появления стружки (в маслосистеме двигателя) — chip detector, chip-in-oil detector
    - предельного значения скорости — maximum operating limit speed switch /relay/
    - предельного значения числа m — maximum operating limit mach number switch /relay/
    - предупреждения об отказе системы (табло)system failure warning annunciator
    - приборной скоростиias switch
    - работы (системы омега) в режиме счисления пути — dr /dead reckoning/ annunciator
    - разряда огнетушителей второй очереди (световой, загорающийся при разряде огнетушителей второй очереди) — alternate /reserve/ fire extinguisher discharge (altn firex disch) indicator light, fire agent no. 2 discharge (fire agent no. 2 disch) light
    - разряда огнетушителей первой очереди (световой) — main fire extinguisher discharge (main firex disch) light, fire agent no. 1 discharge (fire agent no. 1 disch) light
    - (само)разряда огнетушителейfire extinguisher discharge indicator
    - (само)разряда огнетушителей в результате воздейств я высокой температуры окружающей среды — fire extinguisher thermal discharge indicator
    - (само)разряда огнетушителей, мембранный — fire extinguisher discharge bursting disc indicator
    - (датчик) сваливания (самолета) — stall sensor /detector/
    - сваливания, вибрационный (автомат тряски штурвала) — stick shaker. stick shakers are activated by the stall warning system.
    -, световой аварийный (требующий немедленного действия, цвет обычно - красный) — warning light. warning lights are of red color to indicate a hazard requiring an immediate corrective action.
    -, световой предупредительный (рекомендующий выполнение какого-либо действия, обычно желтый) — caution light. caution lights are of amber color to indicate a possible need for future corrective action.
    -, световой уведомительный (сигнализирующий о положении или состоянии контролируемого элемента или системы, цвет (обычно зеленый) — indicator /indicating/ light. green lights are used solely for information not indicating a need for а corrective асtion.
    -, световой указательный (рекомендующий) — advisory light
    - скоростиspeed warning device
    сигнальное устройство, обеспечивающее выдачу звукаового сигнала при превышении заданной максимальной скорости. — speed warning device gives an effective aural warning to pilots whenever the speed exceeds the prescribed maximum speed.
    -скорости (приборной, типа сса) — ias switch
    - состояния синхронизации (сис. омега, по сигналам наземных станций) — omega synchronization status annunciator (syn)
    - сравнения работы двух инерциальных навигационных систем (световой)ins (system) comparison warning light
    - срыва потока (датчик) — stall sensor /detector/
    - "стрелка", мнемонический — warning arrow
    сигнализатор "стрелка" мигает при отказе прибора на другой приборной доске. — arrow will flash to indicate an instrument failure on орposite flight instrument panel.
    - стружки (наличия стружки в масле)chip detector
    - температурыtemperature (sensitive) switch
    - температуры подшипника (стп) (опоры двиг.) — bearing temperature detector (brg temp det)
    - толщины льда (стл)ice accretion detector
    -, трещеточный (издающий резкий прерывистый звук) — clacker a/с ovsp - clacker.
    - (-) указательindicator
    - уровня заправки (суз) (сливного бака санузла, поплавковый) — (float operated) fluid level switch
    - уровня заправки топливомfuel level switch
    - уровня топливаfuel level switch
    - уровня топлива, поплавковый — float-operated fuel level switch
    - цифровой индикацииnumerical display (annunciator)
    - числа mmach switch
    - эксплуатационных минимумов аэродромаairport minima reminder
    высотомеры имеют подвижные индексы для установки эксплуатационного минимума аэродрома. — movable bug is installed on altimeters to set airport minima prior to approach.
    - юза (толкатель на педали управления тормозом)foot thumper
    плунжер, выступающий из тормозной педали и толкающий ногу летчика при юзе колес шасси. — a plunger protruding from brake pedal to strike the pilot's shoe when wheel is skidding.
    - а рудthrottle position switch
    - а руд "max" — max throttle position switch
    - а руд "mг" — idle throttle position switch

    Русско-английский сборник авиационно-технических терминов > сигнализатор

  • 5 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 6 принцип резервирования N+1

    1. need plus one
    2. N+1 redundancy
    3. N+1 configurability
    4. N+1

     

    принцип резервирования N+1
    Системы бесперебойного электроитания (СБЭ), использующие принцип резервирования N+1, представляют собой системы с так называемым "горячим" (т. е. находящимся под нагрузкой) резервом.
    [А. Воробьев. Классификация ИБП http://www.osp.ru/lan/2003/10/138056/ с изменениями]

    EN

    N+1 redundancy
    A redundant method based on one module more than needed to fulfill the required performance. For instance, three parallel systems, each rated 2KVA, form a 2+1 redundant system for a 4KVA consumer. Failure of a single UPS will not affect systems operational performance.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    N+X redundancy
    Load remains secure in the event of a module failure.
    One Ensuring a high level of availability while reducing the initial investment.
    (N+1) or more (N+X) redundant modules could be added to the system

    [GUTOR Electronic LLC]

    Резервирование по принципу N+X
    Электропитание нагрузки в случае выхода модуля из строя не прерывается.
    Обеспечивается высокий уровень эксплуатационной готовности при сокращении первоначальных затрат.
    В системе может быть один (резервирование по принципу N+1) или Х (резервирование по принципу N+X) резервных модулей.

    [Перевод Интент]

     

     

    N + 1 Redundancy ensures maximum uptime and continuous availability

    Резервирование по принципу N + 1 минимизирует время простоя и обеспечивает постоянную готовность оборудования

    Symmetra Power Array achieves N+1 redundancy and higher through proven power sharing technology.

    Power sharing means that all of the power modules in a Power Array run in parallel and share the load evenly.

    N+1 redundancy means running one extra module than will support your full load.


    В ИБП семейства Symmetra Power Аггау резервирование по принципу N+1 или с более высокой избыточностью реализуется на основе проверенной практикой технологии распределения нагрузки.

    Все модули электропитания работают параллельно и несут одинаковую нагрузку.

    Резервирование по принципу N+1 означает, что число модулей электропитания превышает на 1 необходимое для питания защищаемых устройств при их работе на максимальную мощность.

    In this way, all of the modules support one another.

    Таким образом, каждый модуль подстраховывает другие модули

    For example, if your computer load is 15kVA, you achieve N+1 with five 4kVA Power Modules.

    Например, если максимальная потребляемая мощность компьютерной системы составляет 15 кВА, то для резервирования по принципу N+1 требуется пять модулей электропитания по 4 кВА каждый.

    If a module fails or is removed, the other modules instantaneously begin supporting the full load.
    It does not matter which module fails because all of the modules are always running and supporting your load.

    В случае аварии или отключения одного из модулей нагрузка мгновенно перераспределяется на остальные модули.
    Не имеет значения, какой именно из модулей прекратит работу - каждый одновременно выполняет функции и основного и резервного.

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > принцип резервирования N+1

См. также в других словарях:

  • уровень отключения — (напр. турбины) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN trip level …   Справочник технического переводчика

  • уровень взрывозащиты оборудования — 3.26 уровень взрывозащиты оборудования: Уровень взрывозащиты, присваиваемый оборудованию в зависимости от опасности стать источником воспламенения и условий применения во взрывоопасных газовых, пылевоздушных средах, а также в шахтах, опасных по… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты электрооборудования — 3.18 уровень взрывозащиты электрооборудования: Уровень взрывозащиты, присваиваемый электрооборудованию в зависимости от опасности стать источником воспламенения и условий применения во взрывоопасных газовых, пылевоздушных средах, а также в шахтах …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Mb — 3.26.2 уровень взрывозащиты оборудования Mb (для рудничного электрооборудования дополнительное обозначение уровня взрывозащиты взрывобезопасный РВ): Уровень взрывозащиты, присваиваемый оборудованию для установки в шахтах, опасных по рудничному… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Db — 3.26.8 уровень взрывозащиты оборудования Db: Уровень взрывозащиты, присваиваемый электрооборудованию для взрывоопасных пылевых сред с уровнем взрывозащиты «высокий», не являющемуся источником воспламенения в нормальных условиях эксплуатации или… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Dc — 3.26.9 уровень взрывозащиты оборудования Dc: Уровень взрывозащиты, присваиваемый электрооборудованию для взрывоопасных пылевых сред с уровнем взрывозащиты «повышенный», не являющемуся источником воспламенения в нормальных условиях эксплуатации и… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Gb — 3.26.5 уровень взрывозащиты оборудования Gb (для электрооборудования дополнительное обозначение уровня взрывозащиты взрывобезопасный 1): Уровень взрывозащиты, присваиваемый оборудованию для взрывоопасных газовых сред, с уровнем взрывозащиты… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Gc — 3.26.6 уровень взрывозащиты оборудования Gc (для электрооборудования дополнительное обозначение уровня взрывозащиты повышенная надежность против взрыва 2): Уровень взрывозащиты, присваиваемый оборудованию для взрывоопасных газовых сред с уровнем… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты оборудования Мс — 3.26.3 уровень взрывозащиты оборудования Мс (для рудничного электрооборудования дополнительное обозначение уровня взрывозащиты повышенная надежность против взрыва РП): Уровень взрывозащиты, присваиваемый оборудованию для установки в шахтах,… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты электрооборудования Db — 3.18.7 уровень взрывозащиты электрооборудования Db: Уровень взрывозащиты, присваиваемый электрооборудованию для взрывоопасных пылевых сред с уровнем взрывозащиты «высокий», не являющемуся источником воспламенения в нормальных условиях… …   Словарь-справочник терминов нормативно-технической документации

  • уровень взрывозащиты электрооборудования Dc — 3.18.8 уровень взрывозащиты электрооборудования Dc: Уровень взрывозащиты, присваиваемый электрооборудованию для взрывоопасных пылевых сред, с уровнем взрывозащиты «повышенный», не являющемуся источником воспламенения в нормальных условиях… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»